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Understanding Euler Angles
1. Introduction

Attitude and Heading Sensors from CH Robotics can provide orientation information using both Euler Angles and Quaternions.  Compared to

quaternions, Euler Angles are simple and intuitive and they lend themselves well to simple analysis and control.  On the other hand, Euler Angles

are limited by a phenomenon called "Gimbal Lock," which we will investigate in more detail later.  In applications where the sensor will never

operate near pitch angles of +/‐ 90 degrees, Euler Angles are a good choice.

Sensors from CH Robotics that can provide Euler Angle outputs include the GP9 GPS‐Aided AHRS, and the UM7 Orientation Sensor.

Figure 1 ‐ The Inertial Frame

Euler angles provide a way to represent the 3D orientation of an object using a combination of three rotations about different axes.  For

convenience, we use multiple coordinate frames to describe the orientation of the sensor, including the "inertial frame," the "vehicle‐1 frame," the

"vehicle‐2 frame," and the "body frame."  The inertial frame axes are Earth‐fixed, and the body frame axes are aligned with the sensor.  The

vehicle‐1 and vehicle‐2 are intermediary frames used for convenience when illustrating the sequence of operations that take us from the inertial

frame to the body frame of the sensor.

It may seem unnecessarily complicated to use four different coordinate frames to describe the orientation of the sensor, but the motivation for

doing so will become clear as we proceed.

For clarity, this application note assumes that the sensor is mounted to an aircraft.  All examples and figures are given showing the changing

orientation of the aircraft.

2. The Inertial Frame

The "inertial frame" is an Earth‐fixed set of axes that is used as an unmoving reference.  CH Robotics' sensors use a common aeronautical inertial

frame where the x‐axis points north, the y‐axis points east, and the z‐axis points down as shown below.  We will call this a North‐East‐Down (NED)

reference frame.  Note that because the z‐axis points down, altitude above ground is actually a negative quantity.

The sequence of rotations used to represent a given orientation is first yaw, then pitch, and finally roll.

3. The Vehicle‐1 Frame (Yaw Rotation)

As shown in Figure 1, yaw represents rotation about the inertial‐frame z‐axis by an angle .  The yaw rotation produces a new coordinate frame

where the z‐axis is aligned with the inertial frame and the x and y axes are rotated by the yaw angle .  We call this new coordinate frame the

vehicle‐1 frame.  The orientation of the vehicle‐1 frame after yaw rotation is show in Figure 2.  The vehicle‐1 frame axes are colored red, while the

inertial frame axes are gray.
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Figure 2 ‐ Yaw rotation into the Vehicle‐1 Frame

Rotation of a vector from the Inertial Frame to the Vehicle‐1 Frame can be performed by multiplying the vector by the rotation matrix

4. The Vehicle‐2 Frame (Yaw and Pitch Rotation)

Pitch represents rotation about the vehicle‐1 Y‐axis by an angle   as shown in Figure 3.  For clarity, the inertial‐frame axes are not shown.  The

vehicle‐1 frame axes are shown in gray, and the vehicle‐2 axes are shown in red.  It is important to note that pitch is NOT rotation about the

inertial‐frame Y‐axis.

Figure 3 ‐ The Vehicle‐3 Frame (Yaw and Pitch Rotation

Applied)

The rotation matrix for moving from the vehicle‐1 frame to the vehicle‐2 frame is given by

The rotation matrix for moving from the inertial frame to the vehicle‐2 frame consists simply of the yaw matrix multiplied by the pitch matrix:

5. The Body Frame (Yaw, Pitch, and Roll Rotation)

The body frame is the coordinate system that is aligned with the body of the sensor.  On an aircraft, the body frame x‐axis typically points out the

nose, the y‐axis points out the right side of the fuselage, and the z‐axis points out the bottom of the fuselage.

The body frame is obtained by performing a rotation by the angle  around the vehicle‐2 frame x‐axis as shown in Figure 4.  For clarity, the inertial

frame and vehicle‐1 frame axes are not shown.  The vehicle‐2 frame axes are shown in gray, while the body‐frame axes are shown in red.
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Figure 4 ‐ The Body Frame (Yaw, Pitch, and Roll applied)

The rotation matrix for moving from the vehicle‐2 frame to the body frame is given by

The complete rotation matrix for moving from the inertial frame to the body frame is given by

Performing the multiplication, and letting c represent cos and s represent sin, the complete rotation from the inertial frame to the body frame is

given by

The rotation matrix for moving the opposite direction ‐ from the body frame to the inertial frame ‐ is given by

Performing the multiplication, the complete rotation from the body frame to the inertial frame is given by

Note that all this does is reverse the order of operations and reverse the direction of rotation.

 6. Gimbal Lock

Gimbal lock occurs when the orientation of the sensor cannot be uniquely represented using Euler Angles.  The exact orientation at which gimbal

lock occurs depends on the order of rotations used.  On CH Robotics' sensors, the order of operations results in gimbal lock when the pitch angle is

90 degrees.

Intuitively, the cause of gimbal lock is that when the pitch angle is 90 degrees, yaw and roll cause the sensor to

move in exactly the same fashion.  Consider Figure 5 for an illustration of the gimbal lock condition.  By following

the sequence of rotations discussed in this paper, it should be easy to see that the orientation in Figure 5 can be

obtained by yawing and then pitching, OR by pitching and then rolling.

An orientation sensor or AHRS that uses Euler Angles will always fail to produce reliable estimates when the pitch

angle approaches 90 degrees.  This is a fundamental problem of Euler Angles and can only be solved by switching to

a different representation method.  All CH Robotics attitude sensors use quaternions so that the output is always

valid even when Euler Angles are not.

For details about quaternions, please refer to the chapter Understanding Quaternions.

7. Using The Euler Angle Outputs of the Sensor

The rate gyros, accelerometers, and magnetometers on CH Robotics orientation sensors are aligned with the body frame of the sensor, so that if

inertial frame data is needed, the sensor outputs must be converted from the body frame to the inertial frame.  This can be accomplished by

performing a simple matrix multiplication using the matrices described in  Section 5.
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For example, suppose that we want to obtain inertial frame accelerometer data so that we can integrate acceleration to obtain velocity estimates

in the north, east, and down directions.  Let  be the measured body‐frame acceleration vector reported by the sensor.  Then the inertial frame

acceleration is given by

The vector  gives us the measured acceleration with respect to the inertial frame.  Note that this gives us the measured inertial‐frame

acceleration, not the actual acceleration.  A little more work is required before we can extract the physical acceleration of the sensor, and even

then, the obtainable velocity accuracy using low‐cost sensors is extremely poor.  For more details, see Using Accelerometers to Estimate Velocity

and Position.

Magnetometer data can also be converted to the inertial frame in exactly the same fashion as the accelerometers if desired.

Converting rate gyro data to the inertial frame is a little more complicated.  Like the accelerometer and magnetometer data, the rate gyro data is

reported with respect to the body frame of the sensor.  This means that the derivative of your Euler Angles is NOT what is being reported by the

rate gyros.  If you want Euler Angle rates, the rate gyro data must be converted to the proper coordinate frames.  This is a little more complicated

than it was for the accelerometers and magnetic sensors because each gyro angular rate must be converted to a different coordinate frame.  Recall

that yaw represents rotation about the inertial frame z‐axis, pitch represents rotation about the vehicle‐1 frame y‐axis, and roll represents rotation

about the vehicle‐2 frame x‐axis.  Then to get the angular rates in the proper frames, the z‐axis gyro output must be rotated into the inertial

frame, the y‐axis gyro output must be rotated into the vehicle‐1 frame, and the x‐axis gyro output must be rotated into the vehicle‐2 frame.

The resulting transformation matrix for converting body‐frame angular rates to Euler angular rates is given by

Let p represent the body‐frame x‐axis gyro output, q represent the body‐frame y‐axis gyro output, and r represent the body‐frame z‐axis output. 

Then it follows that the Euler Angle rates are computed as

This operation illustrates mathematically why gimbal lock becomes a problem when using Euler Angles.  To estimate yaw, pitch, and roll rates, gyro

data must be converted to their proper coordinate frames using the matrix D.  But notice that there is a division by 

in two places on the last row of the matrix.  When the pitch angle approaches +/‐ 90 degrees, the denominator goes to zero and the matrix

elements diverge to infinity, causing the filter to fail.

The conversion from body‐frame gyro data to Euler Angle rates happens internally on all CH Robotics sensors, but the converted data is not made

available on all CH Robotics products.  Refer to specific device datasheets for details on what data is available.  For devices where Euler Angle rates

are not reported, the body‐frame angular rate data can be converted as described above.
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Understanding Quaternions
1. Introduction

Attitude and Heading Sensors from CH Robotics can provide orientation information using both Euler Angles and Quaternions.  Compared to

quaternions, Euler Angles are simple and intuitive and they lend themselves well to simple analysis and control.  On the other hand, Euler Angles

are limited by a phenomenon called "gimbal lock," which prevents them from measuring orientation when the pitch angle approaches +/‐ 90

degrees.

Quaternions provide an alternative measurement technique that does not suffer from gimbal lock.  Quaternions are less intuitive than Euler Angles

and the math can be a little more complicated.  This application note covers the basic mathematical concepts needed to understand and use the

quaternion outputs of CH Robotics orientation sensors.

Sensors from CH Robotics that can provide quaternion orientation outputs include the UM6 Orientation Sensor and the UM6‐LT Orientation Sensor.

2. Quaternion Basics

A quaternion is a four‐element vector that can be used to encode any rotation in a 3D coordinate system.  Technically, a quaternion is composed of

one real element and three complex elements, and it can be used for much more than rotations.  In this application note we'll be ignoring the

theoretical details about quaternions and providing only the information that is needed to use them for representing the attitude of an orientation

sensor.

The attitude quaternion estimated by CH Robotics orientation sensors encodes rotation from the "inertial frame" to the sensor "body frame."  The

inertial frame is an Earth‐fixed coordinate frame defined so that the x‐axis points north, the y‐axis points east, and the z‐axis points down as shown

in Figure 1.  The sensor body‐frame is a coordinate frame that remains aligned with the sensor at all times.  Unlike Euler Angle estimation, only the

body frame and the inertial frame are needed when quaternions are used for estimation (Understanding Euler Angles provides more details about

using Euler Angles for attitude estimation).

Figure 1 ‐ The Inertial Frame

Let the vector  be defined as the unit‐vector quaternion encoding rotation from the inertial frame to the body frame of the sensor:

where  is the vector transpose operator.  The elements b, c, and d are the "vector part" of the quaternion, and can be thought of as a vector

about which rotation should be performed.  The element a is the "scalar part" that specifies the amount of rotation that should be performed about

the vector part.  Specifically, if  is the angle of rotation and the vector  is a unit vector representing the axis of rotation, then

the quaternion elements are defined as

In practice, this definition needn't be used explicitly, but it is included here because it provides an intuitive description of what the quaternion

represents.  CH Robotics sensors output the quaternion  when quaternions are used for attitude estimation.

3. Rotating Vectors Using Quaternions
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The attitude quaternion  can be used to rotate an arbitrary 3‐element vector from the inertial frame to the body frame using the operation

That is, a vector can rotated by treating it like a quaternion with zero real‐part and multiplying it by the attitude quaternion and its inverse.  The

inverse of a quaternion is equivalent to its conjugate, which means that all the vector elements (the last three elements in the vector) are

negated.  The rotation also uses quaternion multiplication, which has its own definition.

Define quaternions   and  .  Then the quaternion product   is given by

To rotate a vector from the body frame to the inertial frame, two quaternion multiplies as defined above are required.  Alternatively, the attitude

quaternion can be used to construct a 3x3 rotation matrix to perform the rotation in a single matrix multiply operation.  The rotation matrix from

the inertial frame to the body frame using quaternion elements is defined as

Then the rotation from the inertial frame to the body frame can be performed using the matrix multiplication

Regardless of whether quaternion multiplication or matrix multiplication is used to perform the rotation, the rotation can be reversed by simply

inverting the attitude quaternion before performing the rotation.  By negating the vector part of the quaternion vector, the operation is reversed.

4. Converting Quaternions to Euler Angles

CH Robotics sensors automatically convert the quaternion attitude estimate to Euler Angles even when in quaternion estimation mode.  This means

that the convenience of Euler Angle estimation is made available even when more robust quaternion estimation is being used.

If the user doesn't want to have the sensor transmit both Euler Angle and Quaternion data (for example, to reduce communication bandwidth

requirements), then the quaternion data can be converted to Euler Angles on the receiving end.

The exact equations for converting from quaternions to Euler Angles depends on the order of rotations.  CH Robotics sensors move from the inertial

frame to the body frame using first yaw, then pitch, and finally roll.  This results in the following conversion equations:

 and

See the chapter on Understanding Euler Angles for more details about the meaning and application of Euler Angles.  When converting from

quaternions to Euler Angles, the atan2 function should be used instead of atan so that the output range is correct.  Note that when converting from

quaternions to Euler Angles, the gimbal lock problem still manifests itself.  The difference is that since the estimator is not using Euler Angles, it

will continue running without problems even though the Euler Angle output is temporarily unavailable.  When the estimator runs on Euler Angles

instead of quaternions, gimbal lock can cause the filter to fail entirely if special precautions aren't taken.

Copyright (c) CHRobotics LLC. All rights reserved.
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Sensors for Orientation Estimation
1. Introduction

CH Robotics AHRS and Orientation Sensors combine information from accelerometers, rate gyros, and (in some cases) GPS to produce reliable

attitude and heading measurements that are resistant to vibration and immune to long‐term angular drift.

Part of what makes reliable orientation estimates possible is the complementary nature of the different kinds of sensors used for estimation.  Rate

gyros provide good short‐term stability and resistance to vibration, accelerometers can provide attitude information that does not become less

reliable over time, and magnetic sensors provide heading information in addition to limited attitude information (pitch and roll).  By combining data

from each type of sensor using a filter such as an Extended Kalman Filter, accurate orientation estimates can be computed.

To fully understand the capabilities and limitations of CH Robotics devices, it helps to have a clear understanding of the operation of the different

types of sensors that used to compute attitude and heading.  In this application note we describe in detail the operation of accelerometers, rate

gyros, and magnetic sensors.  We present high level descriptions of how the different types of sensors work, in addition to mathematical models

used to quantify the performance characteristics of each type of sensor.

2. Accelerometers

The output of a three‐axis accelerometer mounted to a rigid body can be modeled as

where  is the measured acceleration, m is the mass of the body,  is the sum of all forces on the body (including gravity) expressed in the sensor

body frame, and  is the force due to gravity, also expressed in the body frame (See the chapter on Understanding Euler Angles for details about

different coordinate frames).

The accelerometer model can be intuitively explained using the highly simplified one‐axis accelerometer diagram shown in Figure 1. As shown, an

accelerometer can be constructed by attaching a proof‐mass to a lever‐arm.  Any upward or downward acceleration of the sensor in Figure 1 causes

deflection of the proof mass, which can be measured to determine acceleration (below the natural frequency of the lever/mass system, deflection

is proportional to acceleration). This accounts for the first force term,   , in the accelerometer model: the sum of all forces on the body, including

gravity, produces physical acceleration of the sensor, which in turn causes deflection of the proof mass.

Figure 1 ‐ Simplified One‐Axis Accelerometer

Diagram

The second force term, , is present in the accelerometer model because the force of gravity not only accelerates the sensor body, it also causes

deflection of the proof‐mass itself. If the accelerometer is not accelerating ( ), then gravity produces a downward deflection of the proof

mass that appears equivalent to upward acceleration of the sensor at the acceleration of gravity. Similarly, if the accelerometer is in free‐fall (

) there is no deflection and hence no measured acceleration despite the fact that the accelerometer is accelerating at 9.8 m/s/s toward

the center of the earth.

Our accelerometer model suggests that the expected accelerometer measurement can be obtained by drawing a free‐body diagram that includes all

forces except the force of gravity: the first term, , includes gravity, while the second term, , removes it.  From this perspective,

accelerometers never measure gravity directly ‐ they measure the normal forces that prevent the sensor from accelerating toward the center of the

Earth (in addition to other external forces).

Let us assume that the external forces acting on the sensor are trivial in comparison with the normal forces.  Then the accelerometer output can be

approximately modeled as
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from which it is easy to back out the pitch and roll angles of the sensor by simply noting which direction gravity the gravity vector points.  For

example, if it points straight down, then the sensor is level with pitch = roll = 0.  This is illustrated in Figure 1.  Notice that the x and y

accelerometer outputs are nearly zero, while the z‐axis output is negative one gravity.

Accelerometer output with sensor flat and level on a table‐top

On the UM7 and the UM7‐LT, it is assumed that in general the external forces acting on the accelerometer are close to zero, so that the pitch and

roll angles can be measured directly.  When this assumption is not valid (i.e. on an airplane, a helicopter, motorcycle, or anything that spends a lot

of time accelerating aggressively), the angle estimates of the sensor can degrade.  This will be true of any orientation sensor or AHRS that doesn't

utilize an external aid like GPS.

The simplified accelerometer model given above does not include terms to account for cross‐axis alignment, scale factors, and output bias.  All of

these items can increase the amount of error in the output of the sensor, affecting the accuracy of orientation estimates and (depending on how

the accelerometer is being used) on the accuracy of dead‐reckoning velocity and position estimates.  A more complete model of the accelerometer

output is given by

where  is the accelerometer misalignment matrix,  is a vector of temperature‐varying output biases, and  is the diagonal

temperature‐varying accelerometer sensitivity matrix given by

The sensitivity matrix is what encodes the expected accelerometer raw output for a given measured acceleration.  The misalignment matrix

describes the effect of cross‐axis misalignment and, unlike the bias and sensitivity terms, it is not affected be temperature.

When using accelerometer data, we measure  but what we really want to know is the actual acceleration before scale factors, biases, and

misalignment distort the measurement.  That is, we want to take the measurement and extract the term .   Solving, we get

where   is defined as the corrected accelerometer measurement vector.  In order to obtain the best accuracy, the terms , , and 

 should be determined experimentally over the full operating temperature of the sensor.  At the time of writing, the UM7 and the UM7‐LT are

not calibrated in‐factory so that costs can be kept low.  The GP9 is fully calibrated over temperature.

3. Rate Gyros

Let the vector   be defined as

where p is the actual angular rate about the body‐frame x‐axis, q is the actual angular rate about the body‐frame y‐axis, and r is the actual angular

rate about the body‐frame z‐axis. Then the actual angular rate can be described in terms of the measured angular rate given the expression

where   is the measured angular rate vector,   is a matrix encoding the sensitivity of the rate gyro axes to acceleration, and   is the
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corrected accelerometer measurement vector.  Usually coupling between the acceleration and rate gyro output is small enough that  can be

neglected, but in cases where high acceleration is expected (e.g. on a rocket), this term must be measured and included in the model for the best

accuracy.

For best accuracy, all calibration terms should be determined experimentally so that compensation can be performed.  However, of all the terms

affecting the output error of the gyro measurement, the gyro bias and sensitivity are the largest contributors of error, especially over a wide

temperature range.  If there is insufficient equipment available to perform a complete calibration, the most important calibration procedure is to

remove temperature‐induced output bias changes, followed by the removal of temperature‐induced scale factor changes.

At the time of writing, CH Robotics keeps costs low by not calibrating the gyros on the UM7 and the UM7‐LT in‐house.  The GP9 does include full

calibration.

4. Magnetometers

Of all the sensors used by CH Robotics for attitude and heading estimation, magnetometers are perhaps the most tricky to work with for a variety of

reasons.  First, like accelerometers and rate gyros, magnetic sensors are subject to cross‐axis misalignment and temperature‐varying scale factors

and biases.  In addition, the local magnetic field around the magnetometer can be distorted by magnetic and ferrous metal objects.  This distortion

must be measured and corrected in order for the magnetometer to be useful.  The field can also be distorted by time‐varying electromagnetic

waves from high‐power electrical lines and communication lines placed near the sensor.  Finally, as the sensor is moved around in practice, the

field can be distorted so that, in certain locations (say, next to a concrete wall filled with rebar), the accuracy of the measurement is reduced.  All

of these factors places some limitations on the use of sensors that rely on magnetometers for heading estimation.

We begin with a sensor model essentially equivalent to the gyro and accelerometer models already presented, resulting in the following equation

for correcting cross‐axis misalignment, biases, and scale factors:

Similar to the rate gyro and accelerometer cases already discussed, the vector  represents the actual magnetic field,  is the measured magnetic

field,  is the inverse of the magnetometer sensitivity matrix,  is the inverse of the magnetometer misalignment matrix, and  is the

magnetometer bias vector.

After the magnetometer measurement is corrected for axis misalignment, scale factor, and bias errors, it must be corrected for additional local

magnetic field distortions.  There are two types of distortions that affect the measurement: soft‐iron distortion and hard‐iron distortions.

A soft‐iron field distortion is caused by ferrous metal objects that bend the Earth's magnetic field.  For example, the screws in the UM7 enclosure

bend the local magnetic field.  To obtain reasonable accuracy, this distortion must be calibrated out of the measurement.  This is actually done in‐

factory for the UM7.  A hard‐iron distortion is caused by an object (like the permanent magnets in a motor that has its own permanent magnetic

field.

In the absence of any hard or soft‐iron distortions, the outputs of the magnetometer as it is rotated should trace out a perfect sphere centered

around zero.  Soft‐iron distortions distort the sphere so that it appears to be an ellipsoid.  Hard‐iron distortions shift the mean of the sphere away

from zero.

One way to calibrate the magnetometer for hard and soft iron distortions is to fit an ellipsoid to a set of magnetometer data collected over a wide

variety of different orientations.  The center of the ellipsoid is equivalent to the bias caused by hard iron distortions, while the ellipsoid shape on

the x, y, and z axes are caused by the soft‐iron distortions.  A correction matrix can then be calculated that, when multiplied by the magnetometer

measurements, alters the ellipsoid so that it looks like a sphere again.  This is essentially the approach taken by the magnetometer calibration

algorithm that is included in the CHR Serial Interface software.

There are many other methods for calibrating magnetometers, but in most cases the calibration algorithm produces a matrix and a vector  such that

the corrected magnetometer measurement is given by

Combining the soft and hard‐iron corrections with the calibrated magnetometer measurement, we get

Terms in the above equation can be combined so that there are fewer calibration terms to estimate during calibration, although the process is

complicated by the fact that the bias, scale factor, and cross‐axis alignment terms will remain constant, while the hard and soft iron calibration

terms will change depending on where the end‐user mounts the sensor in the end application.
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Fundamentals of Attitude Estimation
1. Introduction

When estimating attitude and heading, the best results are obtained by combining data from multiple types of sensors to take advantage of their

relative strengths. For example, rate gyros can be integrated to produce angle estimates that are reliable in the short‐term, but that tend to drift

in the long‐term. Accelerometers, on the other hand, are sensitive to vibration and other non‐gravity accelerations in the short‐term, but can be

trusted in the long‐term to provide angle estimates that do no degrade as time progresses.  Combining rate gyros and accelerometers can produce

the best of both worlds ‐ angle estimates that are resistant to vibration and immune to long‐term angular drift.

In this article, we describe a simple method for combining rate gyros and accelerometers to produce reliable pitch and roll angle estimates. The

GP9 and the UM7 use methods that are more sophisticated than what is described here, but the basic intuition behind both methods is the same ‐

gyros are used to give good short‐term stability, while accelerometers are used for their better long‐term stability.

Note that there are some problems with the simple method described here.  We discuss these problems in more detail near the end of the article.

To fully understand the contents of this article, you should first read Understanding Euler Angles and Sensors for Orientation Estimation.

2. Estimating angles with accelerometers

Recall that the output of a three‐axis accelerometer can be modeled as

where  is the measured acceleration, m is the mass of the body,   is the sum of all forces on the body (including gravity) expressed in the sensor

body frame, and   is the force due to gravity, also expressed in the body frame.

If we assume that in general  , then the output of the accelerometer is given by

In the inertial frame, the force of gravity is given by the vector  .  That is, there is no force on the x and y axes, and there is  of

force on the   axis.

Rotating the gravity into the body‐frame of the sensor, we get

.

Thus, the expected accelerometer measurement in the body‐frame is given by

.

Let the components of   be given by  ,  , and  .  Then we can solve for the pitch ( ) and roll ( ) angles using

, and

.

The ^ symbol above the angles indicates that they are estimated angles, not actual angles.

This method provides a quick, simple way to estimate pitch and roll using only accelerometers. However, note that we assumed that the only force

acting on the accelerometers was gravity.  Vibration and other external forces will directly influence our measured pitch and roll angles, making

them very noisy and, in many cases, unusable by themselves.

3. Estimating angles with rate gyros

Rate gyros can also be used to measure angles.  Unlike accelerometers, rate gyros are nominally unaffected by acceleration, making gyro‐based

angle estimates immune to external forces that make accelerometers unreliable.

Remember that rate gyros measure angular rates about the x, y, and z axes in the sensor body‐frame.  We would like to take those measurements
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and use them to figure out our Euler Angle rates.  Since roll, pitch, and yaw each occur in different reference frames, we need to take the rate gyro

outputs and rotate them into the appropriate frames (more details about this process can be found here).

Let the variables p, q , and r represent the rate gyro outputs on the x, y, and z axes, respectively.  Then the Euler Angle rates are given by

Since we are only estimating pitch and roll in this example, we will ignore the term for yaw ( ).

Assuming that the rate gyros are sampled at some fixed interval T, we can estimate pitch and roll using Euler Integration as follows:

, and

.

In the preceding equations, we use the + symbol to distinguish the new angle estimate from the old angle estimate.

This method allows us to use rate gyros to estimate angles that aren't sensitive to vibration and other external forces.  However, because rate gyros

are noisy and imperfect, every time we add new gyro measurements, we add errors to our angle estimates.  Over time, errors will accumulate,

causing our gyro‐based angles estimates to drift over time.  We will solve this problem in the next section.

4. Combining accelerometer and rate gyro data

As described previously, angle estimates based on rate gyros alone drift over time, making them unreliable in the long‐term.  In contrast,

accelerometers do not cause angle estimates to drift, but they are sensitive to external forces like vibration, making short‐term estimates

unreliable.  In this section, we combine the outputs of both types of sensor to produce angle estimates that are resistant to vibration and immune

to long‐term drift.

The estimation process will be split into two steps, a "prediction" step where we will use the rate gyros to estimate incremental changes in the

angle, and an "update" step where we will use the accelerometers to correct rate gyro drift.

The prediction step consists of angular rate integration as we saw in the rate gyro section:

, and

.

In the update step, we assume that the accelerometer‐based angle is usually something close to the truth.  We take the measured angle (from the

accelerometers) and the predicted angle (from the rate gyros), compute the difference, and add a portion of the difference to the final angle

estimate as shown below:

,

The value   is a constant value between 0 and 1.  Notice that if   is equal to 0, then only the gyro‐based angle is used because no accelerometer‐

based correction is applied.  Similarly, if   is equal to 1, then the estimated angle is equivalent to the accelerometer‐based angle.

As   approaches 1, the accelerometers are trusted more and the rate gyros are trusted less.  This makes the angle estimates less sensitive to rate

gyro noise and biases, but more sensitive to vibration and other external forces.

As   approaches 0, the rate gyros are trusted more and the accelerometers are trusted less.  This makes the angle estimates more sensitive to rate

gyro noise and biases, but less sensitive to vibration and other external forces.

In practice,   can be adjusted based on the desired behavior of the angle estimates, but having high‐quality rate gyros allows a lower gain to be

used, preventing unwanted accelerations from affecting the angle estimates.  From an intuitive standpoint, the rate gyros estimate the angle in the

short‐term while the accelerometers gradually pull the angle estimate toward the average angle, whatever that happens to be.

This formulation can be called a "fixed‐gain observer," and it bears a lot of similarity to a Kalman Filter.  The main difference is that in a Kalman

Filter, the observer gain   is selected optimally using known characteristics of the physical system.  In addition, a Kalman Filter can exploit

knowledge of the physical system so that accelerometer data (and other data) needn't be converted to angles before using it to make corrections to

the angle estimates.

The UM7 and the UM7‐LT both use Kalman Filters to optimally combine rate gyro and accelerometer data.

5. Limitations

The downside of this method is that accelerometers can't always be expected to provide reliable estimates of the actual angle.  In some dynamic
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systems (most notably in aircraft), accelerometers can provide incorrect angle information for arbitrarily large amounts of time.  This causes the

angle estimates to degrade and possibly even become completely unreliable.

More sophisticated filters combine inertial sensors with other types of sensors (like GPS) to allow the angle estimates to maintain their accuracy

even during sustained, high‐G maneuvers.  Our GP9: GPS‐Aided AHRS is an example of a sensor that performs better on moving vehicles.
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Using Accelerometers to Estimate Position and Velocity
1. Introduction

We are commonly asked whether it is possible to use the accelerometer measurements from CH Robotics orientation sensors to estimate velocity

and position.  The short answer is "yes and no."  It depends entirely on how much accuracy is needed.  In general, accelerometer‐based position and

velocity estimates from low‐cost sensors (hundreds of US dollars instead of tens of thousands) are very poor and are simply unusable.  This isn't

because the accelerometers themselves are poor, but because the orientation of the sensor must be known with a high degree of accuracy so that

gravity measurements can be distinguished from the physical acceleration of the sensor.  Even small errors in the orientation estimate will produce

extremely high errors in the measured acceleration, which translate into even larger errors in the velocity and position estimates.  Without nicer

rate gyros (FOG or Ring‐Laser, for example) or without the addition of an external reference like GPS, accurate dead‐reckoning is usually not

possible.

Nevertheless, not all application require a great deal of accuracy, and sometimes absolute accuracy is not as important as the ability to measure

short‐term deviations in velocity and position.   For an overview of the kinds of accuracy you can expect to obtain using CH Robotics sensors for

dead‐reckoning, skip to Section  4 ‐ Accuracy of Velocity and Position Estimates.

In this application note, we discuss what is required to get velocity and position estimates using data from CH Robotics sensors that do not already

provide accelerometer‐based velocity and position as standard outputs (at the time of writing, this includes the UM7 and the UM7‐LT).  We also

discuss the expected accuracy of the acceleration measurements, and how that accuracy will affect the reliability of the resulting velocity and

position estimates.

This application note assumes familiarity with coordinate frames used for attitude estimation on CH Robotics sensors.  For simplicity, it also

assumes that Euler Angle ouputs are being used instead of the quaternion outputs of the sensor, although the discussion applies equally well to

quaternion outputs.  For details about coordinate frames and Euler Angles, see the library chapter on Understanding Euler Angles.

2. Extracting Inertial‐Frame Acceleration

To get inertial frame velocities and positions, it is first necessary to obtain the physical acceleration of the sensor in the inertial frame.  To convert

the accelerometer measurement into actual physical acceleration of the sensor, it is important to first understand exactly what the accelerometer

is measuring.  Application note AN1008 describes accelerometer behavior in detail, so the complete discussion won't be included here.  To

summarize, the accelerometer measures both the physical acceleration of the sensor, AND the contribution of normal forces that prevent the

accelerometer from accelerating toward the center of the Earth (i.e. the force exerted on the accelerometer by the table it is sitting on is actually

measured by the sensor).  To measure only the component of acceleration that is caused by physical acceleration, normal forces must be removed. 

As described in application note AN1008, the 3‐axis accelerometer measurement vector  can be modeled as

where   is the actual body‐frame acceleration, g is the acceleration of gravity, and  is the rotation matrix from the inertial frame to the body

frame of the sensor.  This model assumes that there are no cross‐axis alignment, scale factor, or bias errors in the measurement.

In order to estimate the inertial frame velocity and position of the sensor, we need to remove the normal force component from the acceleration

measurement.  Solving for the body frame acceleration  we get

The body‐frame acceleration  must then be rotated into the inertial frame so that it can be integrated to obtain velocity and position. This yields

This equation can be used directly to measure the inertial frame acceleration of the sensor.  Note that CH Robotics sensors typically output

acceleration in units of gravities, not m/s/s or ft/s/s.  Thus the term should g either be 1 gravity, or  must be converted to the desired units.

 We recommend using g =9.8 m/s/s and multiplying  by the same so that the inertial acceleration obtained is in m/s/s.  Then integrating the

acceleration measurement will yield a velocity in m/s, and a position in meters.

3. Estimating Velocity and Position
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Once the measured inertial‐frame acceleration is obtained, it can be integrated to obtain inertial frame velocity  and position :

In practice, data is obtained at discrete time intervals so that the estimated velocity and position are estimated using

where T is the sample period.  Not that depending on the hardware used for communicating with the sensor, the sampling period may not be

constant, and should therefore be measured when making estimates.  This is easier if the sensor data is being read using a microcontroller or a

computer with an RTOS.  A standard windows PC will introduce unpredictable delays in the actual arrival time of serial data, which will cause

timing accuracy issues.

4. Accuracy of Velocity and Position Estimates

In Section  2, we discussed the operations needed to convert measured acceleration to physical (non‐gravity) acceleration in the inertial frame. 

Recall that making the conversion requires that we use the current orientation estimate to rotate the measurement into the inertial frame.

Note that there is a matrix rotation to transform the body‐frame measurement to the inertial frame, following by the addition of the expected

gravity vector in the inertial frame.  This addition removes the measurement of normal forces that don't cause physical acceleration of the sensor.

If the orientation estimate were perfect, this step would introduce no additional error into the acceleration measurement and the only error

contribution would come from the inaccuracy of the accelerometer itself.

Since in practice we never know the sensor's orientation perfectly, the addition of the gravity term in will fail to remove measured normal forces,

and those forces will be mistaken for physical acceleration.  It turns out that on low‐cost sensors (hundreds of US dollars instead of tens of

thousands), orientation error will cause acceleration measurement errors that may dwarf errors from accelerometer misalignment and

miscalibration.  The magnitude of these errors will be large enough that accelerometer‐based position and velocity estimates will be unusable for

most applications.

Table 1 summarizes the acceleration, velocity, and position errors that can be expected given different errors in the orientation estimate of the

sensor.

Table 1 ‐ A summary of velocity and position errors caused by attitude estimation error.

As shown, an angle error of even one degree will cause the estimated velocity to be off by 1.7 m/s after 10 seconds, and the position to be off by

17.1 meters in the same amount of time.  After a single minute, one degree of angle error will cause the position estimate to be off by almost a full

kilometer.  After ten minutes, the position will be off by 62 kilometers.

From the factory, the accuracy of the UM7 and the UM7‐LT sensors can be expected to be within about 2 degrees of actual during normal operating

conditions.  Using this as an upper bound, the UM7 or the UM7‐LT could be used for dead‐reckoning velocity and position estimation as long as 34.2

meters of positioning error at 10 seconds and 3.4 m/s of velocity error at 10 seconds wouldn't be a problem.

There is a silver‐lining to the fact that attitude errors makes it hard to estimate position using accelerometers: because acceleration error is tightly

coupled to position and velocity error, it is actually possible to use velocity and position measurements to estimate attitude!  Our GP9 does this.

 More details about how we do that can be found here.

It is also worth considering that this analysis only considers the effect of orientation estimate errors.  Accelerometer miscalibration will also cause
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measurement errors, particularly when uncalibrated sensors are used over wide temperature ranges.  The change in the scale factors and biases can

be significant over the full operating temperature range, so that calibration becomes critically important.

In summary, it is possible to use the accelerometers to estimate velocity and position, but the accuracy will be very poor so that in most cases, the

estimates are not useful.
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